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Abstract:  In this paper a mathematical 

model of filtration theory with phase 

transitions is investigated. When using 

surface-active substances (surfactants) for 

the development of oil and gas fields in the 

reservoir occur sorption processes at the 

interfaces of individual phases (surfactants 

and oil, or surfactants and soil). In real 

processes, a finite time is required for 

achievement equilibrium. Therefore 

considering the mathematical model was 

called the mathematical model with phase 

relaxation. The solvability of the 

mathematical model, the limiting transition 

in relaxation time are investigated. It is 

proved that in the limiting case, the original 

problem is a problem of Stefan type. 

 Keywords. Sorption, adsorption, 

surfactant, relaxation time, mass transfer 

processes, numerical experiments. 

 

I INTRODUCTION 

This paper is a logical continuation of 

studying the mathematical model presented 

in [1]. However, between phases, many 

authors believe that either Henry's law or 

Langmuir's law is fulfilled. Based on the 

results of [2], below we assume that there is 

some characteristic relaxation time for 

achieving equilibrium between the phases: 

𝜕𝑠

𝜕𝑡
=

1

𝜏
(𝐻(𝑐) − 𝑠),                                     

(1) 

where τ positive constant and  called 

relaxation time. Then the concentration of 

surfactant c(x,t) is a solution to the 

following equation: 

𝑚 ∙
𝜕𝑐

𝜕𝑡
= 𝐷 ∙ ∆𝑐 − 𝑣 ∙ ∇𝑐 −

𝜕𝑠

𝜕𝑡
,   

   (2) 

where 𝑚, 𝐷 – positive constants, 𝑣 – rate of 

fluid filtration in a porous medium, function  

Н(с) = 1 if  с(𝑥, 𝑡) > 𝑐∗, Н(с) = 0  if 

с(𝑥, 𝑡) < 𝑐∗ and in the case of equilibrium 

processes 𝑠 = 𝐻(𝑐). Then the system (1), 

(2) reduces to the well-known Stefan 

problem. Similar mathematical models were 

investigated in [1,2,7]. 

 

 

  II. FORMULATION OF THE PROBLEM 

 Let Ω – is a bounded domain  in 𝑅𝑚 with a 

sufficiently smooth border Г, 𝑄𝑇 =

𝛺𝑥(0, 𝑇),   Г𝑇 = Г𝑥(0, 𝑇). Required to find 

functions 𝑐(𝑥, 𝑡), 𝑠(𝑥, 𝑡) (surfactant 

concentrations in liquid and solid phases), 

defined in the area 𝑄𝑇, satisfying equations 

(1), (2) and initial conditions 

                                  𝑐(𝑥, 0) =

𝑐0(𝑥),       𝑠(𝑥, 0) = 𝑠0(𝑥),     𝑥 ∈ 𝛺                                   

(3) 

and one of the boundary conditions 

𝑐(𝑥, 𝑡) = 𝑐Г(𝑥, 𝑡),           (𝑥, 𝑡) ∈ Г𝑇                                                  

(4) 

𝜕𝑐

𝜕𝑛
− 𝑣 ∙ 𝑐(𝑥, 𝑡) = 𝑐Г(𝑥, 𝑡),          (𝑥, 𝑡) ∈ Г𝑇                                               

(5) 

Here n – internal normal vector to S.  
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 Further, under task I is understood as 

task  (1)-(4), and task II is understood as 

task II (1)-(3), (5). 

 Definition 1. The solution of 

problem I (problem II) is a pair of functions  

{с,   𝑠} such that: 

1. 𝑐 ∈ 𝑊𝑞
2,1(𝑄𝑇),    1 < 𝑞 < ∞,      𝑠𝑡,

𝑠 ∈ 𝐿∞(𝑄𝑇); 

2. Equations (1), (2) are performed 

almost everywhere (a. e.) in 𝑄𝑇; 

3. Initial and boundary conditions for 

𝑐(𝑥, 𝑡) are accepted in the sense of 

traces of functions from the indicated 

classes, for 𝑠 the initial condition is 

taken as follows ‖𝑠(𝑥, 𝑡) −
𝑠0‖∞,𝛺 → 0 at 𝑡 → 0.  

Designations norms and spaces of 

functions coincide with the notation in 

[2]. 

 

III. AUXILIARY SENTENCES 

Lemma 1. Let   ,QWu
p

1 Q  - is a 

bounded domain in kR , 1p , 

 


 )(xuQxA  . Then 0u  a. e. in 

0
A . 

Lemma 2. Let Q - is a bounded domain 

in kR , ,
n
v  QLgv

p
, , 1p , AQx \ , 

)()(lim xfxv
n

n




 and Nn , )()( xgxv
n

 , 

where ;0mesA  vv
n
  weakly in  QL

p
. 

Then fv   a. e. in Q . 

From Lemma 1 it follows that in the 

domain 𝐸𝑐 = {(𝑥, 𝑡) ∈ 𝑄𝑇 |𝑐(𝑥, 𝑡) = 0} 

equalities are performed: 𝑐𝑡 = ∆𝑐 = 0. Then 

from equations (1), (2) are displayed: 

𝐻(𝑐(𝑥, 𝑡)) = 𝑠(𝑥, 𝑡) for a. e. (𝑥, 𝑡) ∈ 𝐸𝑐 .  

From the definition of the function H (c), in 

particular, it follows that 0 ≤ 𝑠(𝑥, 𝑡) ≤ 1   

for a. e. (𝑥, 𝑡) ∈ 𝐸𝑐 . 

3. The correctness of the 

mathematical model. Replacement 

of independent variables and sought 

functions is done: 

 

𝑡′ =
𝑡

𝜏
,     𝑥′ = 𝑥√𝑚/𝜏𝐷,     𝑠′ =

𝑠,    𝑐′ = 𝑐𝑚,   𝐻(𝑐) = 𝐻′(𝑚𝑐).  

 

Also, the rate of fluid filtration 

everywhere below is considered positive 

constant  and the strokes are omitted in the 

equations. 

𝑠𝑡 = 𝐻(𝑐) − 𝑠,      (6) 

𝑐𝑡 − ∆𝑐 + 𝑣 ∙ ∇𝑐 + 𝑠𝑡 = 0.                                                   

(7) 

 

Beyond the change area of 

independent variables, the initial and 

boundary data old designations are 

preserved.  Further, the problem  𝐼′ (𝐼")  is 

understood as task I (𝐼𝐼)  in which equations 

(1), (2) are replaced by (6), (7).  

Theorem 1. Let the border Г ∈ О2 

function 𝑢 ∈ 𝑊𝑞
2,1(𝑄𝑇)  conditions (3), (4) 

(respectively (3), (5)), 𝑠0, 𝑐0, 𝑐Г(𝑥, 𝑡) 

measurable and 0 ≤ {𝑠0(𝑥),   𝑐0, 𝑐Г(𝑥, 𝑡)} ≤
1, 𝑥 ∈ Ω. Then the problem 𝐼′ (accordingly 

the task 𝐼𝐼′) has a unique solution. In this 

case the following estimates are fair:  

 

‖𝑐‖𝑞,𝑄𝑇

(2)
≤ 𝐾1(1 + ‖𝑢‖𝑞,𝑄𝑇

(2)
),     0 ≤

𝑐(𝑥, 𝑡) ≤ 1                                           (8) 

0 ≤ 𝑠(𝑥, 𝑡) ≤ 1,        |𝑠𝑡| ≤ 1.                                                

(9) 

Positive constant 𝐾1 depends only  𝑞, 𝛺 and 

T.  It should be noted, that when  𝑞 > (𝑚 +

2)/2 the solution 𝑐 ∈ 𝐻𝛼(𝑄𝑇) for some 𝛼 >

0. When  𝑞 > 𝑚 + 2  it becomes Holders 

and  ∇𝑐.  

4. Existence. The function 𝐻(𝑐) s 

approximated by continuous 

monotonic functions Н𝑛(𝑐)  

at  𝑐 >
1

𝑛
+ 𝑐∗, 𝑐 < 𝑐∗, 𝑛 = 1, 2, 3, … . 

Through (6)𝑛 , (7)𝑛 denoted the 

equation (6), (7), where instead of the 

function Н function Н𝑛 is considered. 

For each n an approximate problem 

(6)𝑛, (7)𝑛, (3), (4) is considered. The 

operator is determined 𝑃: 𝑊𝑞
2,1(𝑄𝑇) →

 𝑊𝑞
2,1(𝑄𝑇) fixed point which gives a 

solution to this problem. 
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Let 𝑐, 𝑔 ∈ 𝑊𝑞
2,1(𝑄𝑇), then by definition 

𝑐 = 𝑃(𝑔), if 𝑐 satisfies the equation (7)  

𝑠(𝑥, 𝑡) = 𝑠0(𝑥) ∙ 𝑒−𝑡

+ ∫ 𝐻𝑛(𝑔(𝑥, 𝜇)) ∙ 𝑒𝜇−𝑡𝑑𝜇
𝑡

0

 

and conditions (3), (4).   

For 𝑠(𝑥, 𝑡), from the written 

submission, the assessment should be 

performed (9). Then for 𝑐(𝑥, 𝑡)  assessment 

is performed (8). Conditions (3), (4), (8) 

determine in 𝑊𝑞
2,1(𝑄𝑇) some convex, 

closed, bounded subset, which the operator 

P translates into itself. Since P is completely 

continuous, by the Schauder theorem there 

is a fixed point of the operator P, which 

gives the solution to the problem (6)𝑛 , 

(7)𝑛, (3), (4). We denote it by {с𝑛, 𝑠𝑛}. The 

second estimate in (8) follows from the 

maximum principle. In this to obtain the 

upper estimate , the cutting function is 

introduced: �̂� = max{0, 𝑐 − 1}.  To obtain a 

lower estimate, the cutting function has the 

form: �̂� = m𝑖𝑛{0, 𝑐}. Estimates (8), (9) for 

с𝑛,   𝑠𝑛 and limitation 𝐻𝑛(𝑐𝑛) allow us to 

select subsequences 𝑛𝑘, such that: 

𝑐𝑛𝑘
→ 𝑐 a.e. in 𝑄𝑇,  

𝜕𝑐𝑛𝑘

𝜕𝑡
→

𝜕𝑐

𝜕𝑡
,   ∇𝑐𝑛𝑘

→

∇𝑐,   ∆𝑐𝑛𝑘
→ ∆𝑐 weakly in 𝐿𝑞(𝑄𝑇), 

𝑠𝑛𝑘
→ 𝑠,   

𝜕𝑠𝑛𝑘

𝜕𝑡
→

𝜕𝑠

𝜕𝑡
 , 𝐻𝑛𝑘

(𝑐𝑛𝑘
) → h  

* weakly in  𝐿∞(𝑄𝑇). 

From the function definition 𝐻𝑛(𝑐𝑛) 

and 𝑐𝑛𝑘
→ 𝑐 a.e. in 𝑄𝑇, follows that 

ℎ(𝑥, 𝑡) = 𝐻(𝑐(𝑥, 𝑡)) a.e. in 𝑄𝑇\𝐸𝑐. On the 

set  𝐸𝑐 function ℎ(𝑥, 𝑡) = 𝑠(𝑥, 𝑡) and by 

definition of function 𝐻(𝑐) and  lemma 2: 

0 ≤ ℎ(𝑥, 𝑡) ≤ 1. So on set 𝐸𝑐 function 

ℎ(𝑥, 𝑡) coincides with (𝑐(𝑥, 𝑡)) .  Passing to 

the limit in (6)𝑛 , (7)𝑛, (3), (4) at 𝑛𝑘 → ∞ 

we obtain , that the limit functions 𝑐(𝑥, 𝑡),

𝑠(𝑥, 𝑡) are the desired solution of the 

problem 𝐼′. 

5. Uniqueness. To prove the uniqueness  

the solvability of the adjoint problem 

is shown.  

 

Let 𝑐𝑖 ,  𝑠𝑖 , 𝑖 = 1,2 − two problem 

solutions 𝐼′. We put 

𝑐 = 𝑐1 − 𝑐2,     𝑠 = 𝑠1 − 𝑠2,    𝐻 =
𝐻(𝑐1) − 𝐻(𝑐2). 

Functions 𝑐, 𝑠, 𝐻 satisfy equations (6), (7) 

and conditions: 

𝑐, 𝑠|𝑡=0 = 0,   𝑐|Г𝑇
= 0,      𝐻|𝐸 = 𝑠                                                 

(10) 

where 𝐸 = 𝐸𝑐1
∩ 𝐸𝑐2

. Auxiliary 

functions are introduced 𝐹𝛿 и 𝐹𝜀,𝛿: 𝐹𝛿 = 𝐻/𝑐 

on set E={(x,t)∈ 𝑄𝑇| |𝑐(𝑥, 𝑡)| ≥ 𝛿} and  

𝐹𝛿 = 0 on 𝑄𝑇\𝐸, and the function 𝐹𝜀,𝛿 is 

selected from the conditions: 

𝐹𝜀,𝛿 ∈ С̇∞(𝑄𝑇),    0 ≤ 𝐹𝜀,𝛿 ≤

𝐹𝛿 ,    lim
𝜀→0

‖𝐹𝜀,𝛿 − 𝐹𝛿‖
1,𝑄𝑇

= 0. 

In 𝑄𝑇 functions 𝜑, 𝜓 are considered, fairly 

smooth, satisfying the conditions: 

𝜑, 𝜓|𝑡∈[𝑇0,𝑇] = 0,        𝜑|Г𝑇
= 0,       0 <

𝑇0 ≤ 𝑇   (11) 

From (6), (7), (10, (11), the equality is 

derived: 

∫ {𝑐 ∙ 𝑀1(𝜑, 𝜓) + 𝑠 ∙ 𝑀2(𝜑, 𝜓) +
𝑄𝑇

(𝐻 − 𝐹𝜀,𝛿𝑐) ∙ 𝜓} 𝑑𝑥 𝑑𝑡 = 0 (12) 

where  𝑀1(𝜑, 𝜓) = 𝜑𝑡 + Δ𝜑 + 𝑣 ∙

∇𝜑 + 𝐹𝜀,𝛿𝜓, 𝑀2(𝜑, 𝜓) = 𝜑𝑡 + 𝜓𝑡 − 𝜓.  

 Let be  𝐺1, 𝐺2 ∈ �̇�∞(𝑄𝑇0
) and  in 𝑄𝑇0

 

equations are considered 

𝑀𝑖(𝜑, 𝜓) = 𝐺𝑖,    𝑖 = 1,2                                                                

(13) 

Solvability of problem (11), (13) is obtained 

in the standard way, based on the local 

existence theorem and a priori estimates. 

From (13) view is displayed  for 𝜓: 

𝜓(𝑥, 𝑡) = ∫ {𝜓(𝑥, 𝜇) + 𝐺2(𝑥, 𝜇)}𝑑𝜇 −
𝑇0

𝑡

𝜑(𝑥, 𝑡)    (14) 
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Function Φ(x, t) determined by the equality: 

Φ(x, t) = 𝜑(𝑥, 𝑡) ∙ 𝑒𝑡                                                        

(15) 

The following equality is a consequence of 

(13)-(15): 

Ф ∙ Ф𝑡 + Ф ∙ ∆Ф + 𝑣 ∙ Ф ∙ ∇Ф − (1 + 𝐹𝜀,𝛿) ∙

Ф2 = {𝐺1 − 𝐹𝜀,𝛿 ∙ ∫ (𝜓 + 𝐺2)𝑑𝜇} ∙ 𝑒𝑡 ∙
𝑇0

𝑡
Ф     

(16) 

Consider (16) at the point of the internal 

maximum of the function Ф. The first two 

terms at this point are nonpositive and the 

third term turn to zero, so taking into 

account (15), we obtain the estimate: 

|𝜑| ≤ |Ф| ≤ {∫ (|𝜓| + |𝐺2|)𝑑𝑡 +
𝑇0

0
|𝐺1|} ∙

𝑒𝑇0          (17) 

From (14) and (17) using the Gromwell 

inequality, the following estimate is 

obtained: 

||𝜓||∞,𝑄𝑇
≤ 𝑒𝑇0||𝐺1||∞,𝑄𝑇0

+ 𝐾2 ∙ 𝑇0                                       

(18) 

Constant 𝐾2 depends on T and 

norms||𝐺𝑖||∞,𝑄𝑇0
, i=1,2. After the passage to 

the limit → 0 , then by 𝛿 → 0 by virtue of 

estimate (18) and conditions (10), equality 

(12) takes the form: 

∫ {𝑐 ∙ 𝐺1 + 𝑠 ∙ 𝐺2}
𝑄

𝑑𝑥𝑑𝑡 + ∫ 𝜓 ∙ 𝑠
𝐸

𝑑𝑥𝑑𝑡 =

0.                                  (19) 

  

We can assume that  𝐺𝑖,    𝑖 = 1,2 – 

arbitrary functions from 𝐿∞(𝑄𝑇0
). 

Suppose 𝑇0 = 𝑚in(T,  

1

2∙𝐾
). Choosing  𝐺1 = 0,   𝐺2 = 𝑠𝑖𝑔𝑛 𝑠  , from 

(18), (19) we get, that 𝑠 = 0 in 𝑄𝑇0
. At 𝐺2 =

0,   𝐺1 = 𝑠𝑖𝑔𝑛 с from (19) с = 0 in 𝑄𝑇0
. 

Similarly, uniqueness is shown in Ω𝑥[𝑇0,

2 ∙ 𝑇0], Ω𝑥[2 ∙ 𝑇0, 3 ∙ 𝑇0 ] etc. For a finite 

number of steps, we obtain uniqueness in 

𝑄𝑇.     

IV. THE CONTINUITY OF THE 

SOLUTION ON THE INITIAL AND 

BOUNDARY DATA. 

 Let be  𝑐𝑖,  𝑠𝑖, 𝑖 = 1,2 − two 

solutions of the problem 𝐼𝐼′, satisfying 

the initial and boundary conditions: 

𝑐𝑖(𝑥, 0) = 𝑢𝑖(𝑥, 0),  𝑠𝑖(𝑥, 0)

=  𝑠0𝑖(𝑥),   𝑥 ∈ Ω. 

𝜕𝑐𝑖

𝜕𝑛
|

Г𝑇

=
𝜕𝑢𝑖

𝜕𝑛
|

Г𝑇

,   𝑖 = 1,2.   

We introduce the notation: 

𝑐 = 𝑐1 − 𝑐2,     𝑠 = 𝑠1 − 𝑠2,    𝐻

= 𝐻(𝑐1) − 𝐻(𝑐2),     𝑠0

= 𝑠01 − 𝑠02, 

𝑢 = 𝑢1 − 𝑢2,     𝛿 = ‖𝑢‖𝑞,𝑄𝑇

(2)
+

‖𝑠0‖∞,Ω,    𝑐0 = 𝑐01 − 𝑐02,    𝑐Г = 𝑐Г1 −

𝑐Г2.  

Then the functions c, s, H satisfy 

equations (6), (7) and conditions (3), (5). 

Theorem 2.  If the assumptions of 

Theorem1 are fulfilled for the functions 

𝑢𝑖 , 𝑠0𝑖, 𝑖 = 1,2   then the following 

estimates are true: 

 

‖𝑐‖𝑞,𝑄𝑇

(2)
≤ 𝐾3 ∙ 𝛿1/𝑞 ,                                                          

(20) 

‖𝑠𝑡‖𝑝,𝑄𝑇
+ ‖𝑠‖𝑝,𝑄𝑇

≤ 𝐾4 ∙ 𝛿1/𝑝                                                

(21)  

 

where  1 ≤ 𝑝 < ∞, constants 𝐾3,   𝐾4  

depend on  𝑞, 𝑇, Ω, ‖𝑢𝑖‖𝑞,𝑄𝑇

(2)
, ‖𝑠0𝑖‖∞,Ω, 𝑖 =

1,2.  

 Proof. Multiply equation (7) by 𝑐 ∙

(𝑐2 + 𝜀)−
1

2,   𝜀 > 0, and integrate over the 

region 𝑄𝜃:  

 

∫ {[(𝑐2 + 𝜀)
1

2]𝑡 + 𝜀 ∙ (∇𝑐)2 ∙ (𝑐2 + 𝜀)−
3

2 +
𝑸𝜽

𝐻 ∙ 𝑐 ∙ (𝑐2 + 𝜀)−
1

2 –s∙ 𝑐 ∙ (𝑐2 + 𝜀)−
1

2}𝑑𝑥𝑑𝑡 = 

= ∫ сГ ∙ с ∙ (с2 + 𝜀)−
1

2𝑑Г + 𝜀 ∙ 𝑣 ∙
Г

∫ ∇ [(𝑐2 + 𝜀)
1

2] 𝑑𝑥𝑑𝑡
𝑄𝜃

.  
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Drop the nonnegative term in this equality 

𝜀 ∙ (∇𝑐)2 ∙ (𝑐2 + 𝜀)−
3

2 and in the resulting 

inequality we go to the limit by  𝜀 → 0: 
 

∫ {|𝒄|𝒕 + |𝐻|
𝑸𝜽

 –|s|}𝑑𝑥𝑑𝑡 ≤ ∫ |сГ|𝑑Г
Г

. 

               (22) 

∫ {|𝒔|𝒕 + |s| − |𝐻|
𝑸𝜽

 }𝑑𝑥𝑑𝑡 ≤ 0.                                                        

(23) 

  

From inequalities (22), (23)  follows that 

∫ {
Ω

|𝑐(𝑥, 𝜃)| + |𝑠(𝑥, 𝜃)|}𝑑𝑥 ≤ ‖𝑐0‖1,Ω +

‖𝑠0‖1,Ω + ‖𝑐Г‖1,Г𝜃
≤ К ∙ 𝛿.  

 (24)  

 

From the estimates (22), (24) the inequality 

is derived: ‖𝐻‖1,𝑄𝑇
≤ 𝐾 ∙ 𝛿. From here and 

from equation (6) is estimated: ‖𝑠𝑡‖1,𝑄𝑇
≤

𝐾 ∙ 𝛿. Evaluation (21) is a consequence of 

the resulting assessment and the limitations 

of the norm ‖𝑠‖∞,𝑄𝑇
. The considered 

function c (x, t), as a solution to problem (7), 

(3), (5) and, taking into account (21), we 

obtain the estimate (20).  

It should be noted, to get ordinary 

continuity you need to show that  

lim
𝛿→0

‖𝑠𝑡‖∞,𝑄𝑇
= 0. In general, this equality 

does not performed.  

 Suppose we have two solutions to the 

problem under consideration: с ≡ 0, 𝑠 ≡ 0 

и 𝑐(𝑥, 𝑡) = 1 − 𝑠(𝑥, 𝑡),  
 

0 < 𝜀 < 1,            𝑠(𝑥, 𝑡) =

{
1 − 𝑒−𝑡,    0 ≤ 𝑡 ≤ − ln(1 − 𝜀) ,
𝜀,                − ln(1 − 𝜀) ≤ 𝑡 ≤ 𝑇.

  

 

The second solution satisfies the following 

initial and boundary data: 

𝑐|𝑡=0 = 𝜀,    𝑠|𝑡=0 = 0,    (
𝜕𝑐

𝜕𝑛
− 𝑣 ∙ 𝑐) |Г𝑇

= 0. 
 

Obviously, in this case  𝛿 = 𝜀 , а 

‖𝑠𝑡‖∞,𝑄𝑇
= 1. 

 

1. Limit transation in relaxation 

time. Below, we will study the behavior of 

the solution as  𝜏 → 0 using the example of 

problem 1. For problem II a similar result is 

true. We introduce 𝐾(𝑄𝑇) – function space 

with the norm: 

 

‖𝑢‖𝐾,𝑇 = ‖𝑢‖∞,𝑄𝑇
+ ‖𝑢𝑡𝑡‖1,𝑄𝑇

+

‖∇𝑢‖2,𝑄𝑇
+ ‖𝑢𝑡‖2,𝑄𝑇

+ ‖∇𝑢𝑡‖2,1,𝑄𝑇
. 

 

Functions 𝑐𝜏(𝑥, 𝑡),  𝑠𝜏(𝑥, 𝑡) satisfying 

equations  (1), (2) and conditions are 

considered: 

(𝑐𝜏(𝑥, 𝑡) − с0
𝜏 )|ГТ∪{𝑡=0} = 0,        𝑠𝜏|𝑡=0 = 𝑠0

𝜏

    (25) 

 

 where 𝑐0
𝜏 ∈ 𝑊𝑞

2,1(𝑄𝑇) ∩ 𝐾(𝑄𝑇),   𝑠0
𝜏 ∈

𝐿∞(Ω) and  𝑠0
𝜏(𝑥) = 𝐻(𝑐0

𝜏(𝑥)),     𝑥 ∈ Ω.  

        (26) 

Without loss of generality, constants 

everywhere below are considered, equal to 

one.  

 Lemma 3. To solve problem (1), (2), 

(25), (26), the following estimates are valid.: 

 

‖𝑐𝜏‖∞,𝑄𝑇
≤ 𝐾5,                                                                           

(27) 

 

‖𝑐𝑡
𝜏‖2,𝑄𝑇

+ max
[0,𝑇]

‖∇𝑐𝜏‖2,Ω ≤ 𝐾6,                                                       

(28) 

 

‖𝐻(𝑐𝜏) − 𝑠𝜏‖
1,𝑄𝑇

𝛿 ≤ 𝐾7 ∙ 𝛿−1/2 ∙ 𝜏 ,     𝛿 > 0                                                     

(29) 

 

where   𝑄𝑇
𝛿 = Ω𝛿𝑥(0, 𝑇),      Ω𝛿 =

{𝑥 ∈ Ω|   𝑑𝑖𝑠𝑡|(𝑥, 𝜇) > 𝛿}, 𝛿 > 0} , 

and the constants 𝐾𝑖, i=5, 6, 7  depend only 

on 𝑇, Ω  and  ‖𝑐0
𝜏‖𝐾,𝑇. 

 

Proof. From equation (1), (2) and condition 

(26) we get follow estimates: 

 0 ≤ 𝑠𝜏(𝑥, 𝑡) ≤ 1,      𝑠𝑡
𝜏 ∙ (𝑐𝜏 − 𝑐∗) ≥

0,        ∫ 𝑠𝑡
𝜏 ∙

θ

0
(𝑐𝜏 − 𝑐∗)𝑡𝑑𝑡 ≥ 0, θ ≤ T.  

From the maximum principle should also be 

estimated: 0 ≤ с𝜏(𝑥, 𝑡) ≤ 1.  
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Here and further, where there is no 

misunderstanding, the index 𝜏 of the 

functions 𝑐0
𝜏, 𝑐𝜏, 𝑠𝜏 – is omitted.  

Let us show how the last one turns out: 

𝜏 ∫ 𝑠𝑡 ∙ (𝑐 − 𝑐∗)𝑡
θ

0
𝑑𝑡 = ∫ (𝐻(𝑐) − 𝑠)

θ

0
∙

(𝑐 − 𝑐∗)𝑡𝑑𝑡 = (𝐻(𝑐) − 𝑠) ∙ (𝑐 − 𝑐∗)|0
𝜃 +

+ ∫ 𝑠𝑡 ∙ (𝑐 − 𝑐∗)
θ

0
𝑑𝑡 ≥ 0.  

From the resulting estimates and on the 

basis of the results from [2] the estimate (28) 

follows. To obtain the estimate (29), the 

function is introduced:  

𝑓 ∈

𝑊2
1(Ω),    𝑓|Ω𝛿 = 1,   ‖∇𝑓‖2,Ω ≤ 𝐾(Ω) ∙ 𝛿−1/2̇

.  

Further, equation (2) is multiplied by 𝑓 ∙ 𝑐 ∙

(𝑐2 + 𝜀)−
1

2,      𝜀 > 0 and integrated by  𝑄𝑇: 

∫ {[𝑓 ∙ (𝑐2 + 𝜀)
1

2]𝑡 + 𝜀 ∙ 𝑓 ∙ (∇𝑐)2 ∙
𝑸𝜽

(𝑐2 + 𝜀)−
3

2 + 𝑠𝑡 ∙ 𝑓 ∙ 𝑐 ∙ (𝑐2 + 𝜀)−
1

2}𝑑𝑥𝑑𝑡 = 

= 𝜀 ∙ 𝑣 ∙ ∫ ∇𝑓 ∙ ∇ [(𝑐2 + 𝜀)
1

2] 𝑑𝑥𝑑𝑡
𝑄𝜃

+

∫ ∇𝑓 ∙ ∇c ∙ c ∙ (𝑐2 + 𝜀)−
1

2𝑑𝑥𝑑𝑡
𝑄𝜃

.  

 

Passing to the limit at  𝜀 → 0 and discarding 

the nonnegative terms in the left-hand side, 

we obtain the estimate (29). The lemma is 

proved. 

 Let be 𝑈 = 𝑐 + 𝐻(𝑐) generalized 

solution of the Stefan problem (see 

definition, for example, in [9]), satisfying 

initial and boundary conditions: 

         𝑈(𝑥, 0) = 𝑐0(𝑥, 0) +

𝑠0(𝑥),                    𝑥 ∈ Ω,                                                  
(30) 

 

𝑐(𝑥, 𝑡) = 𝑐0(𝑥, 𝑡),                (𝑥, 𝑡) ∈ Г𝑇, 

where  с0 ∈ 𝐾(𝑄𝑇),    𝑠0 ∈ 𝐿∞(Ω),    𝑠0 =

𝐻(𝑐0(𝑥, 0)). 

 Teorem 3. If 

 ‖с0
𝜏 − с0‖𝐾,𝑇 + ‖𝑠0

𝜏 − 𝑠0‖1,Ω → 0  at  𝜏 →

0,                                        (31)  

then  с𝜏 + 𝑠𝜏 converges to  U at  𝜏 → 0 in 

the following sense: 

𝑐𝜏𝑘 → 𝑐∘ weakly in 𝑊2
1(𝑄𝑇) ,    ∗ - weakly 

in  𝐿∞(𝑄𝑇),    (32)  

𝑠𝜏𝑘 → 𝐻(𝑐∘)   ∗ - weakly in 

𝐿∞(𝑄𝑇)   at 𝜏𝑘 → 0 

Really, the functions с𝜏,   𝑠𝜏  satisfy the 

identity:: 

∫ {с𝜏 ∙ 𝜑 − (с𝜏 + 𝑠𝜏) ∙ 𝜑𝑡}𝑑𝑥𝑑𝑡

𝑄𝑇

= ∫(𝑐0
𝜏 + 𝑠0

𝜏) ∙ 𝜑(𝑥, 0)𝑑𝑥

Ω

 

for any 𝜑 ∈ 𝑊2
1(𝑄𝑇),    𝜑|Г𝑇∪{𝑡=0} = 0. 

Then, from conditions (31) and estimates 

(27) - (29) we can choose a subsequence that 

, 𝜏𝑘 → 0 (32) are fulfilled due to the 

uniqueness of the whole family converges to 

solving the Stefan problem as τ → 0.   

 

 

V. NUMERICAL EXPERIMENTS.  

Before proceeding to the construction 

of algorithms for solving the original 

problem, we will analyze one model 

problem from [5], which has important 

practical significance, since it is the basis of 

the models, taking into account the given 

equations of the kinetics of changes in any 

parame.  

 

0









t

w
u

t

u
    

    (33) 

  wwuH
t

w








)(

1
  

         (34) 
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
















*,0

,

,1

)( *

*

uu

uuw

uu

uH    

      (35) 

 where )(uH   characterizes the phase 

transition,  - relaxation time,  ,   -  

positive weight coefficients, taking into 

account the nature of the contribution 

process (transience and slowness).    

For (33) - (35) the following initial and 

boundary conditions are given: 

)()0,( 0 xuxu  , )()0,( 0 xwxw  , 

x                

(36) 

),,(),( txutxu s   TStx ),(     

               (37) 

The correctness of the problem (33) - 

(37) and the qualitative properties of the 

solutions (the asymptotic behavior of the 

solution with an unlimited increase in time, 

limiting transitions in relaxation time and  

 - migration of moisture It is proved that 

problem (33) - (37) is a problem of Stefan 

type. When λ → 0, problem (33) - (37) tends 

to solve the problem without taking into 

account moisture migration.)  were 

investigated in detail in [5]. 

It is known, that systems of equations 

like (33) - (37) have a number of features, in 

particular, depending on the values  ,  , 

  and *u   the solution of the system is 

either completely absent, or contains jumps, 

which leads to the expansion or contraction 

of the phase transition zone. We present a 

numerical algorithm only for the one-

dimensional case with a given type of 

boundary and initial data, i.e.:  

0 txxt wuu        

           (38) 

  xxt wwuHw 


 )(
1

     

           (39) 


















*,0

,

,1

)( *

*

uu

uuw

uu

uH    

             (40) 

initial and boundary conditions:  

xexu )0,( , 

)(1)0,( 0 xwexw x  
, x  

               (41) 

32 )1(),1(,)1(),0( ttuttu  ,  

TStx ),(                   

(42) 

In system (38) - (42) at the beginning 

we solve (39) with the corresponding 

boundary conditions, for a given value u . 

Further we find u  at the found value of w . 

To do this, we introduce a uniform grid 

Niihxxi ,0,0  , where 

consth   – grid spacing 

...2,1,0,~  nntn  , here ~  – time step. 

Required functions u , w  at the nodes 

),( n
i tx  hereinafter referred to as 

n
iu , 

n
iw  

respectively. Then we write the difference 

form of the equation of system (38) and (39) 

for a constant grid step h : 




 ~
2

))((
1 1

2

1
1

11
11

n
i

n
i

n
i

n
i

n
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i
n
i
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h

www
wuH











    

            (43) 

2

1
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11
1

11 2
~~ h

uuuwwuu n
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i


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


 











   

             (44) 

This system is solved sequentially by 

applying the sweep method to each 

equation. The stability conditions of the 

sweep method are satisfied. 

NTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION 
DOI: 10.46300/9102.2020.14.4 Volume 14, 2020

Volume 14, 2020 25



 

Рисунок 1 – Распределение u  (тонкая 

линия) и w  (толстая линия)  

при 0 , 0 , 5,0* u  

 
Picture 2 – Distribution  u  (thin line) and 

w  (thick line)  

at 0 , 1 , 5,0* u  

 
Picture 3 – Distribution u  (thin line) and 

w  (thick line)  

at 1 , 0 , 5,0* u  

 

 
Picture 4 – Distribution u  (thin line) and 

w  (thick line)  

at 1 , 1 , 5,0* u  

 

The obtained numerical results take place 

for solving the original problem after simple 

transformations. In addition, the results of 

[5] are valid for solving the original 

problem. 
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